
cvq
NASA Contractor Report 191554

ICASE Report No. 93-77

ICASE U
AN INTEGRATED RUNTIME AND COMPILE-TIME APPROACH
FOR PARALLELIZING STRUCTURED AND BLOCK
STRUCTURED APPLICATIONS

Gagan Agrawal DTIC
Alan Sussman ELECTE '

Joel Saltz JANI 119"4

NASA Contract No. NAS 1-19480
October 1993

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, Virginia 23681-0001

Operated by the Universities Space Research Association

National Aeronautics and
Space Administration
Langley Research Center II94-01164

94 HIp ton, Vgi * 23681 -00O i

AN INTEGRATED RUNTIME AND COMPILE-TIME APPROACH
FOR PARALLELIZING STRUCTURED AND BLOCK

STRUCTURED APPLICATIONS

Gagan Agrawal

Alan Sussman'

Department of Computer Science

University of Maryland

College Park, MD 20742

Joel Saltz

UMIACS and Department of Computer Science

University of Maryland

College Park, MD 20742

ABSTRACT

Scientific and engineering applications often involve structured meshes. These meshes may be nested (for

multigrid codes) and/or irregularly coupled (called multiblock or irregularly coupled regular mesh problems).
In this paper, we present a combined runtime and compile-time approach for parallelizing these applications
on distributed memory parallel machines in an efficient and machine-independent fashion. We have designed
and implemented a runtime library which can be used •o port these applications on distributed memory
machines. The library is currently implemented on several different systems. To further ease the task of

application programmers, we have developed methods for integrating this runtime library with compilers for
HPF-like parallel programming languages. We discuss how we have integrated this runtime library with the
Fortran 90D compiler being developed at Syracuse University. We present experimental results to demonstrate
the efficacy of our approach. We have experimented with a multiblock Navier-Stokes solver template and a
multigrid code. Our experimental results show that our primitives have low runtime communication overheads.

Further, the compiler parallelized codes perform within 20% of the code parallelized by manually inserting

calls to the runtime library.

1This work was supported by ARPA under contract No. NAG-1-1485, by NSF under grant No. ASC 9213821 and by
ONR under contract No. SC 292-1-22913. The research was also supported in part by the National Aeronautics and Space
Administration under NASA Contract No. NAS1-19480 while authors Sussman and Saltz were in residence at the Institute for
Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681. The authors
assume all responsibility for the contents of the paper.

1 Introduction

In recent years, distributed memory parallel machines have been widely recognized as the most likely means
of achieving scalable high performance computing. However, there are two major reasons for their lack of
popularity among developers of scientific and engineering applications. First, it is very difficult to parallelize
application programs on these machines. Second, it is not easy to get good speed-ups and efficiency on commu-

nication intensive applications. Current distributed memory machines have good communication bandwidths,

but they also have high startup latencies which often result in high communication overheads.

Recently there have been major efforts in developing programming language and compiler support for
distributed memory machines. Based on the initial works of projects like Fortran D [13, 22] and Vienna For-
tran [6, 41] , the High Performance Fortran Forum has recently proposed the first version of High Performance

Fortran (HPF) [12]. HPF allows programmer to specify the layout of distributed data and specify parallelism

through operations on array sections and through parallel loops. Proposed HPF compilers are being designed
to produce Single Program Multiple Data (SPMD) Fortran 77 (F77) code with message passing and/or runtime

communication primitives. HPF offers the promise of significantly easing the task of programming distributed

memory machines and making programs independent of a single machine architecture.

Reducing communication costs is crucial in achieving good performance on applications [20, 21]. While cur-
rent systems like the Fortran D project [22] and the Vienna Fortran Compilation system [6] have implemented
a number of optimizations for reducing communication costs (like message blocking, collective communication,

message coalescing and aggregation), these optimizations have been developed only in the context of regular

problems (i.e. in code having only regular data access patterns). Special effort is required in developing
compiler and runtime support for applications that do not necessarily have regular data access patterns. Our
group has already developed compiler embedded runtime support for completely irregular computations (i.e.
codes in which distributed arrays are accessed based on indirection arrays) [10, 11, 181.

One class of scientific and engineering applications involves structured meshes. These meshes may be

nested (as in multigrid codes) or may be irregularly coupled (called Multiblock or Irregularly Coupled Regu-

lar Mesh Problems) [9]. Multigrid is a common technique for accelerating the solution of partial-differential
equations [5, 30]. Multigrid codes employ a number of meshes at different levels of resolution. The restriction

and prolongation operations for shifting between different multigrid levels require moving regular array sec-
tions [19] with non-unit strides. In multiblock problems, the data is divided into several interacting regions
(called blocks or subdomains). There are computational phases in which regular computation is performed

on each block independently. Boundary updates require communication between blocks, which is restricted
to moving regular array sections (possibly including non-unit strides).

Multiblock grids are frequently used for modeling geometrically complex objects which cannot be easily

modeled using a single regular mesh [2, 3, 24, 29, 36]. In Figure 1, we show how the area around an

aircraft wing has been modeled with a multiblock grid. Multiblock applications are used in important grand-
challenge applications like air quality modeling [28, 32], computational fluid dynamics [40], structure and

galaxy formation [25, 38], simulation of high performance aircrafts [1, 8, 31], large scale climate modeling [14],

reservoir modeling for porous media [14], simulation of propulsion systems [14], computational combustion
dynamics [14], geophysical databases [33], and land cover dynamics [23].

In this paper we present a combined runtime and compile-time approach for parallelizing this general
class of applications on distributed memory machines. We present runtime support that we have designed and 0
implemented for parallelizing these applications on distributed memory machines in an efficient, convenient and L -- -

machine independent manner. We state the extensions required to the current version of HPF for handling
block structured codes. We present methods by which the compilers for HPF style parallel programming

languages can automatically generate calls to our runtime primitives. We discuss how we have integrated our
A,.l.cbIlIty 04od"

1 IPSCT•rD 8 Ole vesl nd/O4

Wing Region (subdomain 1) Control Surface (subdomain 2)

subdomainl

adjacent cells adacent cells
subdomain 2

Figure 1: Block structured grid around a wing, showing an interface between blocks

runtime primitives with the Fortran 90D compiler being developed at Syracuse University [4]. While the

design of our runtime system was initially motivated by multigrid and multiblock applications, our primitives
can also be used in many cases for parallelizing computations with regular data access patterns.

We present experimental results to demonstrate the efficacy of our approach. We have experimented with
one mjltiblock application [40] and one multigrid code [35]. We have measured the runtime overheads of our

primitives. We have compared the performance of compiler parallelized multiblock and multigrid templates

with those of the band parallelized (i.e. parallelized by inserting calls to the runtime library by hand) versions.

Our experimental results show that the primitives have low runtime communication overheads and the compiler
parallelized codes performs within 20% of the codes parallelized by inserting calls to runtime library by hand.
We discuss the tImI t Iz II that we have used to achieve this performance.

Several other researchers have also developed runtime libraries or programming environments for multiblock

applications. Baden [24] has developed a Lattice Programming Model (LPAR). This system, however, achieves

only coarse grained parallelism since a single block can only be assigned to one processor. Quinlan [26] has
developed P++, a set of C++ libraries for grid applications. While this library provides a convenient interface,

the libraries do not optimize communication overheads. Our library, on the contrast, reduces communication

costs by using message aggregation.
The rest of this paper is organized as follows. In Section 2, we introducerhe eruntime library that we have

developed. In Section 3, we discuss the regular section analysis required for efficiently generating schedules

for regular section moves, one of the communication primitives in our library. In Section 4, we state the

extensions required to the current version of HPF and discuss how the compiler recognizes the data access

patterns which can be handled using the runtime primitives that we have developed. In this section we also

discuss the compiler transformations for automatically inserting the calls to the runtime libraty routines. In

Section 5, we present experimental results to study the communication overheads of our primitives and the

paalelze ods eromswihi 2%ofth cds arlllie b isetngcalstorntmelirrybyh2d

effectiveness of the compiler. We conclude in Section 6.

2 Runtime Support

In this section we present the details of the runtime support library that we have designed for parallelizing

multiblock and multigrid codes on distributed memory machines. We discuss the nature of computation

and communication in multiblock and multigrid codes and also describe how the library primitives facilitate

parallelization of these applications.

The set of runtime routines that we have developed is called the Multiblock Parti library [39]. In summary,

these primitives allow an application programmer or a compiler to

"* Lay out distributed data in a flexible way, to enable good load balancing and minimize interprocessor

communication,

"* Give high level specifications for performing data movement, and

"* Distribute the computation across the processors.

We have designed the primitives so that communication overheads are significantly reduced (by using

message aggregation). These primitives provide a machine-independent interface to the compiler writer and

applications programmer. We view these primitives as forming a portion of a portable, compiler independent,

runtime support library.

This library is currently implemented on the Intel iPSC/860, the Thinking Machines' CM-5 and the PVM

message passing environment for network of workstations [15]. The design of the library is architecture inde-

pendent and therefore it can be easily ported on any distributed memory parallel machine or any environment

which supports message passing (e.g. Express). The library primitives can currently be invoked from Fortran

or C programs. Programmers can port their Fortran or C programs on distributed memory machines by

manually inserting calls to the library routines. The resulting program has Single Program Multiple Data

(SPMD) model of parallelism.

While the design of our runtime system was initially motivated by multigrid and multiblock applications,

our runtime primitives are also applicable in many cases for regular codes. In Section 4, we briefly mention

other cases when our primitives can be used. In this section, however, we discuss the details of our runtime

support in context of multiblock and multigrid applications.

2.1 Multiblock and Multigrid Applications

For a typical multiblock application, the main body of the program consists of an outer sequential (time

step) loop, and an inner parallel loop. The inner loop iterates over the blocks of the problem, after applying

boundary conditions to all the blocks (including updating interfaces between blocks). Applying the boundary

conditions involves interaction (communication) between the blocks. In the inner loop over the blocks, the

computation in each block is typically sweeps over mesh in which each mesh-point interacts only with its

nearby neighbors. Since in these applications, there are computational phases which involve interactions only

within each block, communication overheads are reduced if each block is not divided across a large number of

processors. So, blocks may have to be distributed onto subsets of processor space. Since the number of blocks

is typically quite small (i.e. at most a few dozens), at least some of the blocks will have to be distributed

across multiple processors. Partitioning of the parallel loop across the block is the source of the coarse-grained

parallelism for the application. Furthermore, within each iteration of the inner loop fine-grained parallelism

is available in the form of (large) parallel loops, iterating over the elements of the blocks.

3

Now, we briefly discuss the runtime support required for parallelizing multiblock applications. First, there

must be a means for expressing data layout and organization on the processors of the distributed memory

parallel machine. We need compiler and runtime support for mapping blocks (arrays) to subsets of the

processor space. Second, there must be methods for specifying the movement of data required. Two types of
communication are required in multiblock applications. The interaction between different blocks requires the

movement of regular array sections. The inner loop involves interactions among neighboring elements of the

grids. Since blocks may be partitioned across processors, this also requires communication. Third, there must
be some way of distributing loops iterations among the processors and converting global distributed arrays

references to local references.

Multigrid is a common technique for accelerating the solution of partial differential equations. Multigrid
codes employ a number of meshes at different levels of resolution. Multigrid codes have phases of restriction

(in which a coarse grid is initialized based upon a finer grid), prolongation (in which a coarse grid is copied into

a finer grid with non-unit stride and then the other elements on the fine grid are computed by interpolation)

and sweeps over individual grids. Coarse meshes may be obtained from fine grid by coarsening by the same
factor or different factors along different dimensions. Accordingly, each grid may be distributed over the entire

set of processors, or some grids may have to be distributed over parts of the processor space. A particular
form of multigrid technique is the semi-coarsening multigrid technique [34]. Semi-coarsening multigrid works

as follows. Starting from the finest grid, coarser grids are generated by coarsening by different factors along
different dimensions. There may be many grids, having the same number of mesh points, but obtained by

different coarsening factor along each dimensions (i.e. they may have different shapes). In parallelizing such

an application, communication costs can be reduced while maintaining good load balance by the following

mapping scheme. The finest grid is mapped over the entire processor space. Different grids at the same level

(i.e. having the same total number of mesh points but obtained by different coarsening factors along each
dimension) are mapped to disjoint parts of the processor space. In Figure 2 we show how the semi-coarsened

grids are generated and how they can be mapped to the processor space.
The runtime support requirements for the multigrid codes is as follows. As with multiblock codes, we need

to be able to map grids over subsets of the processor space. The restriction and prolongation steps require

regular section moves between grids at different levels of resolution. Again, communication arises because each
grid may be distributed across multiple processors and computation within each block requires near neighbor

interactions. Similarly, the interpolation required during the prolongation step also involves interaction among

neighboring elements. Also, support for distributing loop iterations and transforming global distributed array

references to local references is required.

2.2 Multiblock Parti Primitives

We now discuss the design of our runtime library [39]. Since, in typical multiblock and multigrid applications,
the number of blocks and their respective sizes is not known until runtime, the distribution of blocks onto

processors is done at runtime. The distributed array descriptors (DAD) [4] for the arrays representing these

blocks are, therefore, generated at runtime. Distributed array descriptors contain information about the

portions of the arrays residing on each processor, and are used at runtime for performing communication and

distributing loops iterations. We will not discuss the details of the primitives which allow the user to specify

data distribution. For more details, see [39].

As we discussed previously, two types of communication are required in both multiblock and multigrid
applications. Inter-block communication is required because of boundary conditions between blocks (in multi-
block codes) and restrictions and prolongations between grids at different levels of resolution (in multigrid

codes). Since the data that needs to be communicated is always a regular section of an array, this can be

4

Grids Processors

Level 1 #1 Vw#I

/ \
#2 #3

Level 2 I d2 vW I3

#4 #5 #6 *

Level3 3id#4 gnd5 gd6

#7 #8
Level 4 grid I7 grid #

#9
Level 5

Figure 2: Semi-coarsened grids and their mapping to processors

handled by primitives for regular section move. A regular section move copies a regular section of one dis-
tributed array into regular section of another distributed array, potentially involving changes of offset, stride

and index permutation. Intra-block communication is required because of partitioning of blocks or grids across

processors. The data access pattern in the computation within a block or grid is regular. This implies that
the interaction between grid points is restricted to nearby neighbors. The interpolation required during the

prolongation step in multigrid codes also involves interaction among the neighboring array elements. Such

communication is handled by allocation of extra space at the beginning and end of each array dimension on

each processor. These extra elements are called overlap, or ghost, cells [6, 16, 27]. Depending upon the data

access pattern in a ioop, the required data is copied from other processors and is stored in the overlap cells.
In our runtime system, communication is performed in two phases. First, a subroutine is called to build

a communication schedule that describes the required data motion, and then another subroutine is called to

perform the data motion (sends and receives on a distributed memory parallel machine) using a previously
built schedule. Such an arrangement allows a schedule to be be used multiple times in an iterative algorithm.

The communication primitives include a procedure OverlapCelLiFillSched, which computes a schedule that

is used to direct the filling of overlap cells along a given dimension of a distributed array. Communication for

filling in the overlap cells has been implemented in other systems for regular computations [6, 16, 27], so we
will not be discussing the details here. The primitive Regular-SectionCopySched carries out the preprocessing

required for performing the regular section moves. In section 3, we discuss the details of the regular section

analysis required for efficiently generating the schedule for regular section move.

The schedules produced by OverlapCell-FillSched and RegularSectionCopy-Sched are employed by a

primitive called Data-Move that carries out both interprocessor communication (sends and receives) and

intra-processor data copying.

The final form of support provided by the multiblock Parti library is to distribute loop iterations and

transform global distributed arrays references into local references. Our library distributes loop iterations

based upon the owners compute rule, which means that a particular loop iteration is executed by the processor

owning the left-hand side array element written into during that iteration. As we discussed earlier, we prefer

to generate the Distributed Array Descriptor (DAD) for the arrays at runtime. This means that global indices

can be translated to local indices only at runtime and not at compile-time. Two primitives, LocaLLowerBound

and LocaL-UpperBound, are provided for transforming loop bounds (returning, respectively, the local lower
and upper bounds of a given dimension of the referenced distributed array) based upon the owners compute

rule. Primitives globaLtoJocal and local-iooglobal are also available for translating a global index into local
index and translating a local index on a processor into global index respectively.

3 Regular Section Analysis

In this section we discuss the regular section analysis required for efficiently generating schedules for regular

section moves (i.e. for implementing the primitive Regular-SectionCopy.Sched). By regular section analysis
we mean how each processor can determine, for each other processor, the exact parts of the distributed array

it needs to send and receive, given the source and the destination regular sections in global coordinates. In our

current system, this analysis is always done at runtime. However, if the distributions of source and destination
distributeed arrays and description of source and destination regular sections are available at compile-time,

then this analysis can be done at compile-time as well. In separate works, Chatterjee el al [7], Stichnoth [37]

and Gupta et al [17] have developed compile-time methods for analyzing and generating communication

associated with HPF's forall statements and/or F90 style array expressions. While their solutions work for
the general case when the data distributions are block-cyclic, their methods require that the data distribution

be known at the compile-time and the exact description of the statement be available in terms of compile-time

6

constants. We are interested in techniques which can be used at runtime and are specialized towards the
particular communication patterns associated with multigrid and multiblock applications. Also, since these
applications typically need block distribution, we restrict to describing our analysis when the data is block

distributed along each dimension.

We assume that the array indices always start from 0 (as in the C programming language). The processors
owning source (or, destination) array can be viewed as forming an r-dimensional virtual processor grid. A
processor p in this processor grid has coordinates {pip2, . .. , p, }. We assume that the numbering starts from

zero in each dimension in the processor grid.

The source regular section, denoted by S, is part of the source distributed array s.

S = {(sloi :s-hil :s.strl), (8-102 : s-hi2 :s..str 2), . .. , (S-1o, :s.hi, : s..str,)}

s-loi, s.hii and s-stri are respectively the lowest index, highest index and the stride along the Oth dimension
(in global indices). The regular section S defines a set of array elements. An array index e, along the ith

dimension is said to be a part of the regular section iff 31i (an integer) s.t.

ei = ubloi + 4i • s-stri, (3.0.1)

where,

s-hii - s-co,

0 -~ s.stri

An array element whose indices are (eI, e2,..., e,) belongs to the regular section S iff,

V i, 1 < i < r, the array index ei along the ith dimension belongs to the regular section S.

We will use this format to describe all regular sections. The destination regular section, denoted by V), is
a part of the destination array d.

V) = {(d-loI :d-hi1 : d-strl),(d.Jo 2 : d-hi 2 : d-str2),... ,(d-lo,. :d-hi,. : d.str,.)}

Regular section moves can involve index permutations. We denote by irm(i) the destination dimension
which is accessed by the same loop index as the iVh source dimension.

For each processor owning part of the source regular section, we want to determine the set of local elements
that it will be sending to each processor owning part of the destination regular section. We call these sets of
elements send sets. Similarly, for each processor owning part of the destination, we want to determine the set
of local elements that it will be receiving from each processor owning part of the source. We call these sets of

elements receive sets. Here we just discuss the analysis that a particular source processor does to compute the
send sets. The analysis for determining the receive sets is completely analogous and is therefore not described.

The steps we follow for computing the send sets are as follows. For a processor p, we determine the part
of regular section S that it owns, that is, we restrict the section S on the processor p (which is denoted by
S'(p)). Next, we take a transformation of the section S'(p)) to map it from the source regular section S
to the destination regular section 7V. The resulting section is denoted by V'(p). We next determine the set
of destination processors which own part of the section D'(p), i.e. the destination processors to whom the
processor p will be communicating. For each such processor q, we restrict the section V'(p) to determine the
part that q owns, calling it D"(p, q). In the last step, the section D"(p, q) is mapped back to the source, the

resulting section is denoted by S"(p, q). S"(p, q) is the send set that the source processor p will be sending to
the destination processor q.

We now present the details of the steps mentioned above. We consider a particular processor p which owns
part of the source array s, of which the regular section S is a part. Let lloS(p) and ihiS(p) be the lowest
and the highest points along the ith dimension (in global indices) that the processor p owns. Since the data
distribution is block, the processor p owns a contiguous chunk of data from lloS(p) to lhiS(p).

7

3.1 Restricting S to the Processor p

We now compute the part of the regular section S that the processor p owns. This is denoted by S'(p).

Through-out our discussion, all regular sections will always be described in global indices. Given the global
coordinates, any individual processor can always determine the corresponding local (on processor) indices.

s'(p) = {(a.lo'i(p), ahs'1(p), u~t• (p)),... , (sl.Zo(p), shi; (p), s.Jt,-"(p))}

where,

sJo•(p) = slio, +] ,. •s..Str, (3.1.1)

s-hiý(p) = min(lhifi(p),s.hi,) (3.1.2)

s..tr•(p) = s.str, (3.1.3)

Since the data is block distributed, s..tr•(p) is s-tri,. sJdo(p) is the first index along the i" dimension
which is part of the regular section S and is owned by the processor p. In the calculation of sJo (p) there are

two cases, depending upon whether abo, > lloT(p) or slo1 < lloer(p). If slo1 >_ Ilof(p) then the index slo,

is on the processor p. Therefore, 8Jo•(p) = s-lo,. Alternatively, if abo, < Ilof(p), then the expression for
s-lo•(p) reduces to s0lo, + r(llof(p) - s-loi)/s-stril, s-stri. This is the first index after iio?(p) which is part
of the regular section. Note that sbhiý(p) is not necessarily a member of the regular section S. It just needs

to be greater than the last member of regular section on the processor q, so that the loop accessing successive

indices in the section terminates correctly.

If the processor p does not own any part of the regular section along the Olh dimension, then the above

expressions will give a value of sJo (p) which is greater than the value of s-hii(p). In general, if

3i, 1 < i < r, s.t. sJd(p) > s-hiý(p)

then the processor p does not own any part of the regular section S.

3.2 Mapping S'(p) to the Destination

Next, we determine the corresponding section in the destination array (i.e. part of the destination regular

section that will be received from the processor p). This is denoted by D'(p).

V'(p) = {(d.o' (p),dzhi (p),d..str' (p)),... , (dJo (p), d.hi'(p), d..str.(p)))

where,

j = im(i) (3.2.1)

dblo•(p) = dlo, + sJl� (p) - s8lo,
s-stri •d rj (3.2.2)

Ss.hai[(p)_- sto, I
dhij (p) = dJoj + [i. (sr -8 • d-strj (3.2.3)

d.str•(p) = d..stri (3.2.4)

Since the array is distributed by blocks, dstr'(p) is d..trj. The expressions for dUo (p) and d-hiJ(p)

follow from finding the indices in the destination regular section which correspond to the indices s-lo•(p) and
s8hi(p), respectively, in the source regular section.

3.3 Restricting IY(p) to Processor q

We first determine the set of processors to which the source processor p will send data. The processors owning

parts of the destination array form an r-dimensional virtual processor grid. A processor q, owning part of the

destination array, has coordinates {qI, q2,..- q,} in this processor grid. We assume that each processor owns

sizei indices along the i'h dimension.

We denote by q.minm(p) and q.mazi(p) the lowest and highest coordinates along the i" dimension of the

processors which own part of the regular section D'(p).

qanin,(p) = (p) (3.3+1)

q.mazi(p) = d siz(e) + 1 (3.3.2)[84 -(3..2

A processor q having coordinates {qj, q,- .. , I will receive data from the source processor p iff

Vi, 1 < i < r, q..min1 (p) < qj :_ q..mazi(p)

Consider a particular processor q which will receive data from the source processor p. Suppose that the

start and end points along the i&h dimension on this processor are Io (q) and lhifl(q) respectively. We denote

the part of the destination regular section that the processor q will receive from the processor p by V"(p, q).

•D"(p, q) = {(dJo'l'(p, q), d-hi"(p, q), d.str"(p, q)),. . . , (dJo' (p, q), d-hi"!(p, q), d.str" (p, q))}

where,

d- q)= d + [max(O, o14(q) - dJo (p))] d-str (3.3.3)

d.hiý'(p, q) = min(lhii(q), d.hi (p)) (3.3.4)

d-stri'(p, q) = d-stri (3.3.5)

The reasoning behind the correctness of the above expressions is the same as that used in determining S'

from S, as discussed in Section 3.1.

3.4 Mapping V'(p, q) to the Source

Next, we determine the equivalent part of the regular section D"(p, q) on the source side (i.e. the part of the

source regular section which the processo- p sends to the processor q). We denote this by S"(p, q).

S"(p, q) = {(s-lo''(p, q), s-hi"' (p, q), s-str•"(p, q)), . . ., (s-lo, (p, q), s.hi" (p, q), s.str"'(p, q))}

where,

j = im(i) (3.4.1)

dJo,'(p, q) - dlo(
sJoý (p, q) sjoi + d.strj s-stri (3.4.2)

s-hiV'(p, q) = sJoi + [q) -d- j • s-stri (3.4.3)
I d..strj

s.strj'(p, q) = s-stri (3.4.4)

The reasoning behind the correctness of the these expressions is the same as that used in determining V'(p)

from S'(p) in Section 3.2.

3.5 Discussion

All the calculations described above are performed by the processor p locally and do not involve communication
with any other processor. Therefore, send and receive sets can be generated efficiently. Based on the calculation
of S", the processor p knows the contents of the message that it must send to processor q. However, when

processor q receives this message, it does not have any information about which local memory locations each
element of the message must be copied into. To facilitate this, each destination processor computes the set
of (local) elements that it will receive from each source processor. The calculations for computing these

receive sets are completely analogous to the computations for the send sets. Therefore, we do not describe
the computation of the receive sets here. The source processor p always sends the set of elements it needs to
send to the processor q in a single message, packed in the column major fashion. Processor q can then use the
receive set information to copy the elements in the received message into the appropriate local elements.

An alternative to this scheme is that the message sent by the source processor p also contains information
about what local memory location at the destination processor q each of elements packed in the message needs

to be copies to. The destination processor q can then copy elements of the message into its local elements based
upon this information. This approach does save some computation at the destination processors. However,
the size of the messages increases significantly because of the extra information that needs to be sent. In
our implementation, we have chosen to compute both the send and receive sets, since on current distributed
memory machines, this is less expensive than communicating the receive set information.

3.6 Example

Consider a regular section move that involves a source array of size 100 * 100 and a destination array of size
50 * 100. The source array is block distributed over a 2 * 2 virtual processor grid and the destination array
is block distributed over a 4 * 1 virtual processor grid. The source and the destination regular sections are:
S = {(10 : 60 : 2), (10 : 70 : 3)) and, V = {(10 : 30 : 1), (5 : 80 : 3)). The first dimension of the source regular
section is aligned to the second dimension of the destination regular section and the second dimension of the
source regular section is aligned to the first dimension of the destination regular section i.e. im((l) = 2 and

im(2) = 1.

We consider the source processor p with coordinates { 1, 0). The part of the global array that this processor
owns is ll0(p) = 50, lhif(p) - 99, 1142(p) = 0 and lhi5 (p) - 49.

The part of the source regular section that processor p owns (Se(p)) is given by

S'(p) = {(50: 60: 2),(10: 49: 3))

The corresponding section on the destination side (DV(p)) is given by

De(p) = {(10: 23: 1),(65: 80: 3))

Next, the processor p determines the set of destination processors with whom it will be communicating.

We have for the destination array, size, = 50 and size2 = 25.
This gives, p-min1 (p) = 0, p..mazl(p) = 0, p-rnin 2(p) = 2, and p.maz2(p) = 3. The destination

processors the source processor p will communicate with are the ones with grid coordinates {0, 2) and {0, 3).
Consider the destination processor q with coordinates {0, 3). The part of the destination array that processor

q owns is given by iiod(q) = 0, 1hid(q) = 49, 11od(q) = 75 and ihid(q) = 99.
The part of regular section which the processor p will be sending to the processor q (D"(p, q)) is given by

VD(p,q) = {(10: 23: 1),(77: 80: 3))

in

The corresponding source section (S"(p, q)) is now given as

S"(p,q) = {(58: 60: 2),(10: 49: 3))

4 Compiler Support

In this section we first discuss the additional functionality required in the current version of HPF to support

multiblock and multigrid codes. We describe how a compiler can analyze the data access patterns associated
with a loop, to recognize communication patterns which can be handled using the runtime primitives for

multiblock problems. We then describe the compiler transformations for generating the calls to these runtime

primitives. We also briefly discuss how loop iterations are distributed to achieve parallelism.

4.1 Language Support

The current version of HPF does not support all the functionality required for multiblock and multigrid ap-
plications. In multiblock problems, the problem geometry is divided into a number of blocks of different sizes.

As we have discussed in the previous sections, each of these blocks needs to be distributed onto a portion

of the processor space. Similarly, in multigrid codes, communication overheads can typically be reduced by

distributing each coarse grid over a part of the processor space [35]. The current version of HPF does not

provide any convenient mechanism for distributing arrays (or templates) onto a part of the processor space.

We therefore need additional functionality for conveniently distributing arrays onto part of the processor space.

In HPF, the programmer declares an abstract processor space by using the processor directive:

!HPF$ PROCESSORS P(N)

In general, the abstract processor space can have any number of dimensions. To support block structured

applications, we need to be able to specify processor subspaces. We declare a processor subspace as follows:

!HPFS PSUBSPACE PI IS P(LB:UB)

The above directive states that P1 is the part of the processor space P which starts at processor LB and
ends at processor UB. In addition, if the processor subspace PI is created from the processor space P, then
P1 must have the same number of dimensions as P. Since the sizes of the blocks are, in general, not known at
compile-time, the subspace directive must be executable, so that the parameters do not have to be compile-

time constants. Once a processor subspace has been declared, arrays or templates can be distributed onto it.

For example,

!HPF$ TEMPLATE T(100,100)
!HPF$ DISTRIBUTE T(BLOCK,BLOCK) ONTO P1

Similar functionality is available in Vienna Fortran [41], where a distribution can be mapped to a processor

reference. We prefer to explicitly name the processor subspace since it makes it easier to detect at compile-time
which arrays or templates have been mapped to the same processor subspace, even if the exact size of the

subspace is not available as compile-time constants.
With the block distributions supported in the current version of HPF, the entire array gets distributed

uniformly across the processors of the distributed memory parallel machine. This may not be ideal for load
balancing for many applications. While the programmer may declare a large array, not all the elements of the

11

array may be actual mesh points participating in computation. Some of the array elements at both ends of

each dimension may be used for participating in exchanges between blocks. We refer to such array elements

as extermaa ghost ceils. For example, the actual declared arrays for a given block may be 52 x 12 x 12, with two
external ghost cells at the beginning and end of each dimension. This means that the actual mesh representing

the computation is of size 48 x 8 x 8. It is these mesh points which must be distributed evenly across the

processors onto which the block is distributed, so that the computation load will be evenly balanced. The

external ghost cells at both ends of each dimension are then stored at the first and last processor along that
dimension in the processor space. For example, if an array with 8 elements, plus two external ghost cells on

each end (for a total of 12 elements), is distributed on 4 processors, we would like to store 2 mesh points on

each processor along that dimension. The first and last processors can then store the external ghost cells at

the beginning and end, respectively. This results in a much better load balance than simply distributing 3

array elements onto each processor (which will result in the first and last processors having only 1 real mesh
point and the intermediate processors having 3 real mesh points each).

The current version of HPF does not provide any mechanism for specifying external ghost cells. We need

additional functionality in the align statement to express them. We do this by explicitly specifying the number

of external ghost cells at the-beginning and end of each dimension:

!HPF$ DIMENSION A(105,105)

!HPFS ALIGN A(ij) WITH T(i:2:3j:2:3)

This example says that an array of size 105x105 is aligned along a template of size 100xl00, with 2 ex-
ternal ghost cells at the beginning of each dimension and 3 external ghost cells at the end of each dimension.

If the template T is distributed by blocks onto a two dimensional processor space, A(3:102,3:102) also gets

distributed in the same fashion. Note that our purpose here is not to introduce new syntax but to achieve

the additional functionality that we need. We believe that this functionality will be added, in some form, in

a future version of HPF.

4.2 Identifying Communication Patterns

In this subsection we discuss how the compiler identifies the communication patterns which can be handled

using the runtime support for multiblock problems. Note that our purpose is not to provide a general framework
for compilingforallstatements; we are only interested in recognizing the patterns that can be handled efficiently

using the primitives we have developed.
While we have designed the runtime support with multiblock and multigrid codes in mind, the runtime

primitives can also be used to efficiently handle communication for many other types of applications. Regular

section move primitives can be used for handling the communication required when a distribution of an array

is changed (using the redistributed statement of HPF [12]. They can also be used to handle the communication

required for filling ghost cells when the data distribution is cyclic or block-cyclic. The primitives can also be

used for handling communication in forall loops and array expressions in many regular applications, especially

when strides are involved.

We do not consider applications in which indirection arrays may need to be analyzed to identify commu-

nication patterns. The irregular communication arising from use of indirection arrays can be handled using

the Parti primitives for irregular problems [101, which have also been integrated with compilers for HPF-style

languages (including the Rice University Fortran 77D compiler [18] and the Syracuse University Fortran 90D

compiler [4]). F90D and HPF also provide a number of intrinsic functions (such as reduction, spread, etc.).

We assume that if a computation can be done using these intrinsics, it is either written this way by the

12

programmer or is recognized by the compiler in an early phase of the compilation.
HPF allows multiple statement forall loops and array expressions for expressing parallelism. We restrict our

discussion to the problem of analyzing a single statement forall loop for communication patterns. A multiple
statement forall loop is just like a single statement forall loop, with the multiple assignment statements all
having the same loop header. The same analysis can be done for each assignment statement within the forall
loop. The array expressions provided by HPF can always be translated into equivalent forall loops.

We classify the data access patterns associated with a forall loop as being one of three kinds:

"* Completely regular (not involving any communication).

"* Ones that can be handled by filling in overlap cells.

"* Ones that requires regular section moves.

Consider any forall statement with array expressions involving an array A in the left hand side and an
array B as one of the arrays on the right hand side. The form of the forallstatement is assumed to be as follows:

forall (il = lo, : hil : stl, ... ,im = 0in :him : stf)

A(f , f2, ,j) = ... B(g,,92,.. .)...

The ik, (k = l..rn) are the loop variables associated with the forall statement. lok, hik and sik are
respectively the lower bound, upper bound and the stride for each loop variable. For the left hand side array

A, fi, f2, .. , fj are the subscripts. Similarly, for the right hand side array B, g1, 92, ,g. are the subscripts.
The form of the array subscripts f and g is assumed to be:

Ak = clkilk + dlk

9k = c2 ki 2 k + d2k

Here, ilk and i 2 k are loop variables. If a subscript is a loop invariant scalar, then we say that the loop
variable ilk (or, i2 k), is -0 and Clk (or, c 2 k) is 0. clk, c2 k, dlk and d2k may be expressions, but we assume

that they do not involve any loop variable. Our primitives are not applicable for cases in which multiple loop

variables are associated with a particular array subscript or when the same loop variable appears in more than
one subscript for a particular array or when a subscript is a higher order function of a loop variable. Such
cases can be handled by using the Parti primitives for irregular problems. Also, the HPF specification allows
the lower bound, upper bound and stride expressions for each loop variable to be evaluated in any order.

Consequently, the lower bound, upper bound and stride for any loop variable are not allowed to be a function
of any other loop variable. It is possible, in general, that a loop variable may appear only in the right hand
side array or only in the left hand side array. If a particular loop variable appears only in the right hand side,
this represents successive overwrites on the same memory location of the left hand side array. Such code is not
likely to appear in practice and therefore, we do not consider this case. If a particular loop variable appears

only in the left hand side array, this represents a spread operation. We assume that it is written using the
intrinsic spread operation, and is not a part of the forall.

Depending upon how the arrays A and B are distributed and aligned with respect to each other, we consider

three different cases. These are:

Case I: Arrays A and B are aligned to different templates.

Case II: Arrays A and B are identically aligned to the same template. This case also requires that A
and B are arrays of identical shape and size, i.e. having the same number of dimensions and the same

size in each dimension.

13

Case III: Arrays A and B are aligned to the same template, but with a different stride, offset and/or
index permutation. This means that the the arrays A and B are mapped to the same processor subspace,

but each in a different manner.

We now discuss how the data access pattern associated with each of these cases is analyzed. The transfor-
mations required for generating calls to the runtime primitives are discussed in Section 4.3.

4.2.1 Case I

Since the arrays are aligned to distinct templates, the communication is always handled using the regular
section move primitive from the runtime library. We expect that if a user has declared distinct templates then
they are either distributed over different processor subspaces, or have a different number of distributed dimen-
sions. Therefore, there is no regularity in the communication associated with a foral! statement containing

references to such arrays.
It is possible that a programmer may create more than one template with the same number of distributed

dimensions, distributed over the same processor subspace. We can extend our analysis to consider the processor
subspace over which distinct templates are distributed in determining any regularity in the communication

required. However, we do not discuss this possibility here.

4.2.2 Case II

The data access patterns associated with this case may be completely regular, or may require the overlap cells
to filled in, or may require a regular section move.

Let DD(A) denote the set of dimensions of the array A which are distributed. Under the assumptions for
Case II, DD(B) = DD(A). In terms of the form of the forall statement and the array subscripts that presented
in Section 4.2, the condition for the communication associated with the forall to require a regular section move

is:

3 j E DD(A) s.t.

1. ili # i2i , or,

2. cI, 6 c2 , or,

3. dl, • d2j and either dlj or d2i is not a compile-time constant, or,

4. ilj = , i2j = 0 and dIl : d2j.

The first condition states that there is loop index permutation. In that case, a regular section move will be
required. The second condition states that, along the j"t dimension, the elements of the arrays A and B are
being accessed with different strides. Again, this case will require a regular section move. The third condition
corresponds to the fact that there are non-constant offsets. If there are constant offsets, then only the overlap
cells need to be filled in. For overlap cells, space needs to be allocated at compile-time, so the number of overlap
cells must be known at the compile-time. If the offsets are not compile- time constants, then we use a regular
section move to handle communication. This situation can also be handled by shifts into a temporary array [4].
The fourth condition says that along dimension j a loop variable does not appear in either the left hand side or
the right hand side index and the loop invariant scalars are different. This represents a copy from one location
to another, but because of the loop variables associated with other dimensions, will typically require a regular
section of data to be moved. Since the distributed array descriptor is not available at compile-time, it cannot
be determined at compile-time whether this data move will require any interprocessor communication. So we
handle this kind of data move using the regular section move primitives we have already discussed.

The data access pattern requires filling in overlap cells, if the following condition holds:

14

Arrays A and B are aligned identically

L.H.S. R.H.S. Regular Section Overlap Cell

Expression Expression Move Required Fill Required

A(ij) BU+2,i+l) YES NO

A(ij) B(2*ij) YES NO

A(ij) B(i+nlj+2) YES NO

A(ij) B(i+lj+2) NO YES

A(ij) B(ij) NO NO

Figure 3: Analyzing communication for Case II

1. A regular section move is not required and

2. 3j E DD(A) s.t. dl, 0 d2,.

The second condition states that there is a difference in the offsets along some (distributed) dimension.

Overlap cells must be filled along each dimension in which there is a difference in the offsets. In Figure 3 we

show examples for the different possibilities within case II, for identically aligned two dimensional arrays A

and B.

4.2.3 Case III

In this case, arrays A and B are aligned to the same template (T), but in different fashions. We consider

only the cases when A and B are aligned to T in such a way that none of the dimensions of either A or B is

replicated. In this case, the number of distributed dimensions of A and B would be identical, and will be equal

to the number of distributed dimensions of T. Consider any distributed dimension j of A (i.e. j E DD(A)).

We use AD(Aj) to denote the dimension of the template T along which the distributed dimension j of the

array A is aligned. We use map(j) to denote the dimension of the right hand side array B which is aligned to

the same dimension of the template T as dimension j of the array A. Formally,

map(j) = k 4== 31s.t. AD(A,j) = I A AD(B,k) = I.

Since each of the dimensions of A and B are distributed along exactly one dimension of the template T (as

required by HPF), map(j) is defined and is unique for each distributed dimension of A.

For the purpose of the discussion, we assume that the arrays A and B are aligned as follows:

!HPFS ALIGN A (kl,..., kj,... k1) WITH T(h11,..., hij, : Extlowli : Ezt.highlj,..., hiP)

!HPF$ ALIGN B (kl,..., k, ... k,,) WITH T(h21 ,..., h2j,, : EtAJow2j : Ezt high2,,..., h2p)

where;

p = IDD(A)I

= AD(A,j)

15

9' = AD(B, j)

hlj, = al2*kj +bl2

In the above, dimension j of the array A is aligned with dimension j' of the template T. Similarly, dimension
j of the array B is aligned with dimension j" of the template T. ExtJowls and ExtMhighlj are, respectively,
the number of external ghost cells at the beginning and end of dimension j of the Array A. Similarly, EztJow2j
and Ezt-high2l are the number of external ghost cells at the beginning and end, respectively, of dimension j
of Array B.

If we view the computation as accessing elements of the template T, then the effective offset for the left
hand side array reference along dimension j of the array A is di .alj +bli - Ext.Jowl,. Similarly, the effective
offset for the right hand side array reference along dimension j of the array B is d2j * a2j + b2, - Ezt low2i.
The data access pattern iu the forali loop will require a regular section move if the following condition holds:

3j E DD(A) s.t.

1. ili # i2map(j) , or

2. cl * alj $ C2mp(j) * a2inap(j), or

3. dlj * al, + bl - Ext Jowlj # d2mgp(j) * a 2 mp(j) + b2 maj,() - Eztj0V2'PU(j)
and either of these effective offsets is not a compile-time constant, or

4. ili = 4, i2j = 0 and bli - Ezt Jowlj $ b2mnp(i) - EztJow2ma,(j).

As in Case II, the first condition states that there is loop index permutation. The second condition implies
that there is a difference in the effective stride taken along any dimension. The third conditions says that
the offsets may be distinct and one of them is not a compile-time constant. The fourth condition says that
a rectilinear section of data needs to be moved along a certain dimension. Suppose that ili = ik, and
i2map(j) = 4

2h2 If we view the loop iterations as accessing elements of the template T, cli st*t * ali is the
effective stride of the subscript on the left along dimension AD(A, j) and similarly c2map(j) * St8 2 * a2m..p(j) is
the effective stride of the subscript on the right hand side along dimension AD(B, map(j)). By the definition
of map(j), AD(A,j) = AD(B, map(j)). If ilI and i2map(j) are identical, then kI = k2. So, the required
condition for the effective stride for left and right side to be identical is clj * al, = c2 mp(j) * a2-,,(j).

The data ar :,s pattern will require filling in overlap cells if the following condition holds:

1. A regular section move is not required and

2. 3j E DD(A) s.t.
dlj * al, + bl - ExtJowlj $ d2map(j) * a2map(,) + b2map(j) - Ext-ow2map(j)

The first condition says that we have not already decided that a regular section move was required. The
second condition says that the effective offsets are not identical. In Figure 4, we give several examples showing
the results of the analysis for Case Ill.

4.3 Generating calls to the rut-Aime library

Once the nature of the comnmitication required has been identified, the compiler must insert the appropriate
calls to the runtime primitives. We first discuss how the calls are made to the routines for filling in ghost cells.
We discuss this in the context of Case III from the previous section, since Case II is really a special case of
Case Ill.

16

ALIGN A(ij) WITH T(ij)
ALIGN B(ij) WITH T(2*j,i+3:2:1)

L.H.S. R.H.S. Regular Section Overlap Cell
Expression Expression Move Required Fill Required

A(ij) B(ij) YES NO

A(ij) BUJ,i) YES NO

A(2*ij) B6,i) NO YES

A(2*ij) B1,i+3) NO YES

A(2*ij) BU,i+l) NO NO

Figure 4: Analyzing communication for Case III

We identify each distributed dimension j of the array A for which

dli * al + bli - Ezt.Jowl, # d2ma.p() * a 2,.p(j) + b2,.p(i) - EztJow2m.,p().

One call to the schedule building primitive OverlapCell.Fill.Scled and one to the data moving primitive

Data-Move is inserted for each such dimension. Since all computations are distributed using the owner

computes rule, overlap cells are filled in for the right hand side array B. For the OverlapCelFiULSched

call, the dimension of the move is map(j) and the number of overlap cells to be filled in is d2map(j) * 2ma2p(j) +

b2map(j) - Ezt.Jowt2,.ap(j) - dlj * ali + bli - EztJowlj.

The schedule building primitive is called with the Distributed Array Descriptor (DAD) of the array as a

parameter. The actual array storage location need not be specified. A call to DataMove is then made which

uses the previously built schedule to copy the data.

We now discuss how calls to the primitive for moving regular sections are inserted. If there is more than

one array on the right hand side, then the analysis described in Section 4.2 is done for each such array. For

each of the right hand side arrays which requires a regular section move, a temporary array is declared and

a regular section move is done from the right hand side array into the temporary array. If there is only one

array on the right side (i.e. the forall loop represents only a copy and does not have any computation), then

the regular section move is performed directly from the right hand side array to the left hand side array.

The parameters of Regular.sectionamove-sched are assigned as follows. In the forall loop, ij is the jth

loop variable. The total number of loop variables is m. For each of the loop variables, we identify the

dimensions corresponding to the subscripts of A and B where they appear. Srcdim(j) and Destdim(j) denote

the dimensions of the source array B and the destination array A (or a temporary array) that correspond

to the jth dimension of the regular section being moved. Note that Srcdim(j) is not necessarily j since the

forall loop allows arbitrary permutation among dimensions. If ilkl = ij and i2&2 S ij , then SrcDim(j) is
assigned k1 and DestDim(j) is assigned k2. The remaining elements of Srcdims and Destdims are assigned

the remaining dimensions of A and B whose subscripts are loop invariant scalars (the exact ordering is not

important).
SrcLos(k) and SrcHis(k) denote the start and end points, respectively, along each dimension of the source.

If i 2k = j, then, SrcLos(k) = SrcHis(k) = d2&. Otherwise, if i2t = ii, for some j, then, SrcLos(k) =

17

C ORIGINAL F90D CODE
C Arrays A, B and C are distributed identically

FORALL (i = 1 :100j = 1:100) A(ij) = B(i+lj) + C(ij)

C TRANSFORMED CODE
Dim = 1
NoOfCells = I
sched = OverlapCell-Fill.Sched(DAD,Dim,No-.OfCells)

C DAD is distributed array descriptor for A, B and C
C i is dimension I, j is dimension 2

Call DataMove(Bsched,B)
LI = LocalLower-Bound(DAD,i)
L2 = LocalJowerBound(DAD,2)
HI = LocalUpperBound(DAD,i)
H2 = LocalUpper.Bound(DAD,2)
do 10 i = LI,HI
do 10j = L2, H2

10 A(ij) = B(i+lj) + C(ij)

Figure 5: Overlap cell fill and loop bounds adjustment example

c2 k * (Joj) + d2k and similarly, SrcHis(k) = c2k * (hi,) + d2k. For the destination, the low and high indexes

are computed in the same manner.
SrcStr(k) denotes the stride of the move along each dimension of the source. If i2k - 4', then, SrcStr(k)

doesn't matter. Otherwise, if i2k a ii, for some j, then, SrcStr(k) = c2& * st,. For the destination, the strides
are computed in the same manner.

4.4 Distributing loop iterations

Once the calls have been inserted for communicating the required array elements, the loop iterations must be
distributed among the processors. As we stated earlier, this is done using the owner computes rule. Since the
distributed array descriptors are built at runtime, it is not possible to compute the local loop bounds on each
processor at compile-time.

Consider any loop variable ij, Let i2 1l =- ii. The loop accesses elements ranging from eIk1 * io, + dIkl to

Clk1 * hij + dlkl. We partition the loop based upon the portion of the distributed arrays that are owned by a
given processor. This is done by inserting runtime calls to the the library primitives Local-Lower-Bound and
LocaL Upper.Bound. Note that for arrays which are not in canonical form (i.e. where clj $ 1 or dl, # 0 for
some j), we can still partition the loop based upln the owners compute rule. Consequently, we never need
to scatter any data after the loop has been executed.

In Figure 5 we show an example of how the calls to primitives for filling in overlap cells are inserted by the
compiler. In Figure 6, we show how the compiler inserts calls to the primitives for moving regular sections.
In both examples, the transformed code containing the calls to the runtime library will run as SPMD code
on each processor of the distributed memory parallel machine. Note that in the compiler generated code,
schedule building primitives will be called every time any foral! loop requiring communication is executed.

18

C ORIGINAL F90D CODE
C Arrays A, B are distributed identically

forall (i = 1:100:2j = 1:50) A(i~j) =B(2*j,i)

C TRANSFORMED CODE
NumSrcDim = 2 NumDestDim = 2
SrcDim(l) = 2 DestDim(l) = 1
SrcDim(2) = 1 DestDim(2) = 2
SrcLos(1) = 2 DestLos(l) = 1
SrcLoa(2) = I DetLos(2) = 1
StcHis(1) = 100 DestHis(l) = 100
Srcflis(2) = 100 DestHis(2) = 50
SrcStr(1) = 2 DestStr(1) = 2
SrcStr(2) = 2 DestStr(2) = I
Sched = RegazwSection-Move-Sched(DAD,DAD,NumSrcDim,NumDestDim,

SrcDim, SrcLos, Srcliis, SrcStr,
DestDim, DestLos, Dest~is, DestStr)

Call Dat&-Move(B,Sched,A)

Figure 6: Regular section move example

The hand coded version can build a schedule once and reuse it in subsequent iterations. Similarly, in the

compiler generated code, runtime calls to the loop bound adjustment primitives will be made each time a loop
is executed. The hand coded version can reuse the adjusted bounds over the multiple time steps, and also
for multiple loops that have the same loop bounds. These two factors may cause compiler generated code to

perform worse than hand parallelized code.

5 Experimental Results

In this section we present experimental results to demonstrate the efficacy of our approach. We are interested
in two different factors, performance of the library primitives and the effectiveness of the compiler. We study

the first factor by measuring the runtime overhead incurred in using our library primitives as compared the

bare cost of communication associated with the best possible hand parallelized codes. We study the latter
factor by comparing the performance of compiler parallelized codes with the codes parallelized by manually

inserting calls to the library functions. We also study the effect of data distribution on the performance of

these codes.
We have experimented with two major codes: a template from a multiblock Navier Stokes' solver and a

semi-coarsening multigrid code. We have parallelized a template from a multiblock computation fluid dynamics

application that solves the thin-layer Navier-Stokes equations over a 3D surface (multiblock TLNS3D), using

our prototype Fortran 90D compiler. The multiblock TLNS3D code we are working with was developed by

Vatsa ef al. [40] at NASA Langley Research Center, and consists of nearly 18,000 lines of Fortran 77 code.
The template, which was designed to include portions of the entire code that are representative of the major
computation and communication patterns of the original code, consists of nearly 2,000 lines of F77 code. We

have also worked with a semi-coarsening multigrid code [35]. This has nearly 2,500 lines of F77 code. In all

the experiments described in this section, performance data is presented starting from the minimum number

of processors which provided sufficient memory for executing the program up io 32 processors.

5.1 Overhead of Primitives

We are interested in evaluating the performance of a code parallelized using our primitives as compared the
performance of the "best hand-parallelized" code. By hand parallelized code, here we mean parallelized by
inserting calls to the communication routines provided by the distributed memory machine and not using our
library routines. Note that, to the best of our knowledge, no complete block structured code has yet been hand-

parallelized on a distributed memory parallel machines. The reason is that, for an application programmer

parallelizing such a code with hand, it is very difficult to analyze the exact communication required in these

codes and then be able to use the communication routines available on the parallel machine to handle it
efficiently. The use of library primitives involves runtime overheads because of generating schedules, overhead

of copying data to be communicated into buffer at source processors, and similarly the overhead of copying

the received data into appropriate memory locations at the destination processors. The possible advantage (in

terms of efficiency) of the library primitives is that, for each invocation of a data-move, each processor sends at

most one message to each other processor. It may, in general, be very difficult for an application programmer,
parallelizing the code by hand, to do such message aggregation. However, the best performance that an
application programmer can ever achieve will only have the cost of actual communication and computation,
assuming that messages have been aggregated to reduce the effect of communication latencies. We will

study the overheads incurred in a code parallelized using our primitives as compared to the best possible
performance of hand parallelized code, which incurs the minimum communication costs (assuming maximum

message aggregation).

20

Time (sc.)

250.00 - 'loo-

240.00 .

230.00 ,

220.00 -

210.00 "

200.00 o5

190.00 "

130.00 /

170.00 /

160.00 -e

150.00 5.

140.00 -

130.00

120.00

110.00

100.00

90.00
80.00

70.00

60.00

50.00
40.00- I I I I Byft pew iteration x 103

1.00 2.00 3.00 4.00 5.00

Set I Communication (Max. message aggregation)

Set I1 Communication and copying
Set III: Communication, copying and schedule building

Figure 7: Performance of Primitives on iPSC/860 (100 iterations)

21

ONE BLOCK: 49 X 9 X 9 Mesh (50 Iterations)

Number of Compiler Hand Hand

Processors Parallelized Parallelized F90 Parallelized F77

4 6.99 6.88 6.20

8 4.17 4.06 4.00

16 2.47 2.35 2.28

32 1.55 1.45 1.41

Figure 8: Performance comparison for small mesh, one block (in seconds) on iPSC/860

We consider a simple code executed on 2 processors in which a regular section move involves moving data
from processor 0 to processor 1. We vary the number of bytes involved in the regular section moves and

measure three sets of timings: the time required just for communication, the time required for communication
when library primitives are used (excluding the cost of schedule building) and the total time required when the

library primitives are used (including time for schedule building). The first set of timings represents the best

performance that hand parallelization can achieve if all the data elements to be communicated are laid out
contiguously. If the data elements to be communicated are not contiguous, then the application programmer

will need to do copying to aggregate message. The second set of timings represents this case. The third set

of timings represent the performance with the use of library primitives. The timings presented are for 100

iterations of the regular section move.

The performance results on an iPSC/860 are presented in Figure 7. The results show that the cost
of copying (difference between Set I and Set II) is typically a small fraction (less than 5%) of the cost of
communication for most of the cases. Also, if the schedule built is used over a large number of iterations,

the cost of building the schedule is also a small fraction of the cost of communication. We have performed

similar experiments on Thinking Machines' CM-5. Our experiments have shown that the runtime overheads

associated with the use of primitives are again a small fraction of the bare cost of communication.

5.2 Multiblock Code

We have parallelized a multiblock template using our compiler. We hand parallelized this template by manually

inserting calls to the multiblock Parti routines. (Note that this is different from the hand parallelization we

talked about in the previous subsection.) We converted the F77 (sequential) code to F90D manually, by
rewriting the the major computational parts of the code using forali loops and F90 array expressions, also

adding the required data distribution directives. We then parallelized the code by running it through the

F90D compiler. We also created a hand parallelized F90 version of the template in which all computations

are done with single statement forall loops, but the calls to the runtime primitives are inserted manually.

We now compare the relative performances of compiler parallelized F90 code, hand parallelized F90 code
and hand parallelized F77 code, varying the mesh size and number of blocks for the application, and also
varying the number of processors used on an Intel iPSC/860. we used the minimum number of processors In

Figure 8, we present the performance results on a 49 x 9 x 9 mesh (with one block), comparing the performance
of the three versions from 4 to 32 processors. In Figure 9, we present the performance results on a 49 x 17 x 9

mesh (split into two blocks), comparing the performance of the three versions from 8 to 32 processors. The

22

TWO BLOCKS: 49 X 9 X 9 Each (50 Iterations)
Number of Compiler Hand Hand

Processors Parallelized Parallelised F90 Parallelized F77

8 7.49 6.69 6.17

16 4.64 4.07 4.03

32 2.88 2.32 2.30

Figure 9: Performance comparison for larger mesh, two blocks (in seconds) on iPSC/860

template is communication intensive and therefore the absolute speedups are not very high in either of the
versions. The compiler parallelized F90 code performs within around 20% of the hand parallelized F77 code.

The hand parallelized F90 code performs worse than the hand parallelized F77 code. This is because, in the
F90 version, all computation is done through single statement forall loops that result in the creation of (large)

temporary arrays. Such use of temporary storage, and the fact that no loop fusion between parallel loops

is done by the compiler, increases the number of cache misses on each processor. However, the difference
in performance between the F90 and F77 hand parallelized versions decreases as the number of processors

increases. This is because as the number of processor increases, less memory is required on each processor, so

the effect on cache utilization is less significant. The difference in performance of the hand parallelized F90
and the compiler parallelized code comes from two major factors. First, in the compiler generated version, the

runtime calls for computing new loop bounds are made in each loop iteration, as compared to only once for

the hand parallelized version. Second, as the template is run over a large number of time steps, the compiler

generated version makes repeated calls to the runtime library to build communication schedules, whereas in

the hand parallelized version the calls are lifted out of the time step loop. To reduce the additional cost

due to this second factor, our runtime library library saves schedules. When a call is made for generating

the schedule, the library searches a haih table to check if any schedule with exactly the same parameters is

present. If so, the saved schedule is returned. This technique still has this overhead as compared to a hand

parallelized version. To study the exact costs of each of these factors, we present a more detailed experiment

in Section 5.4.

5.3 Multigrid Code

We have also experimented with a semi-coarsening multigrid code developed by Rosendale and Overman [35].

This has nearly 2,500 lines of F77 code. We discussed the semi-coarsening multigrid technique and the mapping

policy used in parallelizing such an application earlier in Section 2.

We rewrote this code using forall loops and including the distribution directives and then parallelized

it using our compiler. This code had also been parallelized by inserting the calls to the library routines

manually [35]. In Figure 10, we show the performance comparison of these two parallel versions run on Intel

iPSC/860. The results are for a 32z32z32 grid, using a coarsening factor of 4 along each dimension. The code

uses 8 different grids at four different levels. We did not create a separate hand parallelized F90 version since

most of the subroutines in this code are fairly small and therefore rewriting it in F90 using forall loops did not

involve introducing large temporary arrays. Consequently, we did not expect to see any notable difference in

the performance of hand parallelized F90 and F77 versions.
The results of the performance of compiler parallelized and hand parallelized multigrid code are presented

23

No. of Compiler: Compiler: By hand: By hand:

Proc. 1" iteration Per Subsequent I" iteration Per Subsequent

Iteration Iteration

8 4.80 2.29 4.60 2.14

16 3.84 1.38 3.41 1.35

32 3.03 .95 2.48 .88

Figure 10: Semi-Coarsening multigrid performance (in seconds) on iPSC/860

_ TWO BLOCKS : 25 X 9 X 9 Each (50 Iterations)

No. of Compiler Compiler Compiler Compiler Hand
Proc. Version I Version IH Version III Version IV F90

4 13.45 7.63 7.41 7.33 6.79

8 15.51 4.78 4.58 4.54 4.19

16 11.72 2.85 2.71 2.62 2.39

32 8.01 1.85 1.79 1.66 1.47

Version I : Runtime Library does not save schedules

Version II : Runtime Library saves schedules
Version III : Schedules reuse implemented by hand

Version IV : Loop bounds reused within a procedure

Figure 11: Effects of various optimizations (in seconds) on iPSC/860

in Figure 10. The results show that the compiler parallelized code performs within 10% of the hand parallelized
code in this case. Again, as this code was very communication intensive, the absolute speedup is not very high

for either version.

5.4 Compiler Optimizations

In Figure 11, we study the effect of the compiler optimizations. Version I is a compiler parallelized version

in which the library does not save any schedules. This version performs badly because of the high cost of
rebuilding the schedules for every iteration. Version II is the compiler parallelized version in which the library

saves schedules. This results in a major gain in performance. We now discuss some optimizations which

are not implemented in the current compiler. We studied the effect of these optimizations by modifying the
compiler generated code by hand. Version III represents the case where the compiler performs sophisticated
interprocedural analysis to reuse the schedules during successive time steps. Version III performs better than
version II, in which the schedules are reused within the library, but the difference is not large.

In the compiler parallelized version, runtime calls are made to the functions for adjusting loop bounds for

24

TWO BLOCK: 49 X 17 X 9 Mesh (50 Iterations)

Number of Blocks Mapped Blocks Mapped

Processors Entire Proc. Space Disjoint Proc. Spaces

4 8.99 7.59

8 5.14 4.74

16 3.24 2.83

32 2.41 1.87

Figure 12: Effect of Data Distribution on iPSC/860

each forall loop on each time step. The hand parallelized version can store the loop bounds computed during

the first time step, for subsequent reuse. Additionally, a procedure may contain several loops involving the
same array on the left hand side that have the same loop bounds. Our compiler generates separate runtime

calls for adjusting loop bounds for each such loop. Such optimizations will be implemented in a future version

of the compiler.

In Figure 11, the difference between version III and t'ie hand parallelized F90 version shows the extra

cost of generating loop bounds at runtime for each forall loop during each time step. The results show that
generating loop bounds at runtime is the major factor in the performance difference between the compiler
parallelized version and the hand parallelized versions. In version IV, we show the results of an unimplemented

optimization in which the compiler is able to identify the loops with the same left hand side array and same

loop bounds within a subroutine. Then the compiler needs to generate calls to the loop bound adjustment

functions only once for each such set of loops. This optimization also provides an improvement over version

III.

E.5 Effect of Data Distributions

As we discussed earlier, one of the features of our runtime library is the ability to map arrays (or templates)
to subsets of the processor space. In the current definition of HPF (and hence in HPF compilers), this is

not possible. In block structured codes, this feature allows us to keep the communication overheads low
while maintaining the load balance. To study the benefit of this feature, we experimented with the multigrid

template described above for two block case. We ran the parallelized code, once distributing both the blocks

over the entire processor space and then distributing each block over disjoint processor spaces. The results on
Intel iPSC/860, shown in the Figure 12, show that the latter scheme improves the performance by nearly 10

to 25%. Since there is no difference in the net computation performed at each Processor in either of the the
two cases, this difference comes because of the increased amount of communication required when each block

is distributed across the entire processor space. Mapping a block over a large number of processors increases
communication arising from near neighbor interactions during the regular computation within blocks. Note

that a 10 to 25% degradation in performance occurs when there are only two blocks. We expect that with a

larger number of blocks, the difference in the performance would be much more severe.

25

6 Conclusions

To reliably and portably program distributed memory parallel machines , it is important to have both a

machine independent language and runtime support for optimizing communication. High Performance Fortran

and its variants have emerged as the most likely candidates for machine independent parallel programming on

distributed memory machines. One class of scientific and engineering applications involves structured grids or

meshes. These meshes may be nested (as in multigrid codes) or may be irregularly coupled (called multiblock

codes or Irregularly Coupled Regular Meshes). Multiblock and multigrid codes form a significant part of

scientific and engineering applications.
In this paper we have addressed the problem of runtime, compiler and programming language support

for parallelizing this important class of applications on distributed memory machines. We have designed and

implemented a set of runtime primitives for parallelizing these applications in an efficient, convenient and

machine independent manner. The runtime primitives give ability to specify data distributions, perform com-

munication and distribute loops based on data distributions specified at'runtime. One of the communication

primitives in our library is the regular section move, which can copy a rectilinear part of a distributed array

onto a rectilinear part of another distributed array, potentially involving index permutations, change of strides

and change in offsets. We have presented runtime analysis which can implement this communication primitive

efficiently.

For making the task of application programmers easy, it is important to have compiler support. In this

paper, we have presented techniques that can be used by compilers for HPF-style programming languages to

automatically generate calls to the runtime primitives. We have presented the method by which the compiler

can analyze the data access patterns associated with parallel loops and therefore identify communication

patterns which can be efficiently handled using the communication primitives that the multiblock Parti library

supports. We have also presented compiler transformations that the compiler performs for automatically

generating calls to the runtime primitives.

We have implemented the compiler analysis method in the Fortran 90D compiler being developed at

Syracuse University. We consider this work to be a part of an integrated effort toward developing a powerful
runtime support system for a F90D compiler. We have experimented with a template from a 3D multiblock

Navier-Stokes solver and a multigrid code.

For demonstrating the efficacy of our approach, we examined two separate factors: performance of the

runtime primitives and performance of compiler parallelized code as compared to the code parallelized by

inserting calls to the runtime primitives by hand. We examined the additional cost of using library primitives

as compared to the minimum cost of communication. Performance results show that the additional cost in

using the library primitives (schedule building and data copying) is a small fraction of the minimum cost

of communication. One of the features of our library which is not supported in current version of HPF

(and consequently in HPF compilers) is the ability to map arrays or blocks over part of the processor space.

We presented results with TLNS3D template to show the improvement in performance achieved because

of this feature. We compared the performance of compiler parallelized code with the performance of hand

parallelized F90 and F77 codes, and have shown that the compiler parallelized code performs within 20% J
hand parallelized F77 code. The optimization of having the runtime library save and reuse communication

schedules allows the compiler parallelized code to perform almost as well as hand parallelized code. We have
also experimented with other optimizations. The optimization of reusing computed loop bounds within a

subroutine improves the performance of the compiler parallelized code and brings it within 10% of the hand

parallelized version.

To the best of our knowledge, we are not aware of any real block structured codes which have been paral-

lelized on any distributed memory machine. The reason is that, for an application programmer parallelizing

26

such an application by hand, it is very difficult to analyze the exact communication required and then to be
able to use the communication routines provided by the machine to communicate efficiently. Our runtime
and compiler support can be used to parallelize such applications conveniently. Our experimental results have
shown that the code parallelized by using the compiler will have only a small overhead as compared to the
best hand parallelized code (i.e. parallelized by invoking system's communication primitives by hand).

While the design of our runtime system was motivated by multiblock and multigrid applications, our
runtime primitives can be used in many cases for regular codes as well. We therefore, believe that our runtime
support and compiler techniques can be used by compilers of HPF-style parallel programming languages in

general.

Acknowledgements

We gratefully acknowledge our collaborators, Geoffrey Fox, Alok Choudhary, Sanjay Ranka, Tomasz Haupt,
and Zeki Bozkus for many enlightening discussions and for allowing us to integrate our runtime support into
their emerging Fortran 90D compiler. The detailed discussions we had with Sanjay Ranka, Alok Choudhary
and Zeki Bozkus during their visits to Maryland were extremely productive. We are also grateful to V. Vatsa
and M. Senetrik at NASA Langley for giving us access to the multiblock TLNS3D application code. We will
also like to thank John van Rosendale at ICASE and Andrea Overman at NASA Langley for making their
sequential and hand parallelized multigrid code available to us. We also thank Jim Humphries for creating a

portable version of the runtime library.

References

[1] Christopher A. Atwood. Selected computations of transonic cavity flows. In Proceedings of the 1993
ASME Fluids Engineering Conference, Forum on Computational Aero- and Hydro-Acoustics, June 1993.

[2] M.J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics. Journal of Com-
putational Physics, 82:67-84, 1989.

[3] M.J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential equations. Journal
of Computational Physics, 53:484-512, 1984.

[4] Zeki Bozkus, Alok Choudhary, Geoffrey Fox, Tomasz Haupt, Sanjay Ranka, and Min-You Wu. Compiling
Fortran 90D/HPF for distributed memory MIMD computers. Submitted to the Journal of Parallel and

Distributed Computing, March 1993.

[5] W. Briggs. A Multigird Tutorial. SIAM, 1987.

[6] B. Chapman, P. Mehrotra, and H. Zima. Programming in Vienna Fortran. Scientific Programming,
1(1):31-50, Fall 1992.

[7] Siddhartha Chatterjee, John R. Gilbert, Fred J.E. Long, Robert Schreiber, and Shang-Hua Teng. Gen-
erating local addresses and communication sets for data-parallel programs. In Proceedings of the Fourth

ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming (PPOPP), pages 149-158,

May 1993. ACM SIGPLAN Notices, Vol. 28, No. 7.

[8] Kalpana Chawla and William R. Van Dalsem. Numerical simulation of a powered-lift landing. In Pro-
ceedings of the 72nd Fluid Dynamics Panel Meeting and Symposium on Computational and Experimental

Assessment of Jets in Cross Flow, Winchester, UK. AGARD, April 1993.

27

[9] A. Choudhary, G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, S. Ranka, and J. Saltz. Software support

for irregular and loosely synchronous problems. Computing Systems in Engineering, 3(1-4):43-52, 1992.
Papers presented at the Symposium on High-Performance Computing for Flight Vehicles, December 1992.

[10] R. Das, R. Ponnusamy, J. Saltz, and D. Mavriplis. Distributed memory compiler methods for irregular
problems - data copy reuse and runtime partitioning. In J. Salts and P. Mehrotra, editors, Languages,

Compilers and Runtime Environments for Distributed Memory Machines, pages 185-220. Elsevier, 1992.

[11] Raja Das, Joel Salts, and Reinhard von Hanxleden. Slicing analysis and indirect access to distributed
arrays. Technical Report CS-TR-3076 and UMIACS-TR-93-42, University of Maryland, Department of

Computer Science and UMIACS, May 1993. Appears in LCPC '93.

[12] D. Loveman (Ed.). Draft High Performance Fortran language specification, version 1.0. Technical Report
CRPC-TR92225, Center for Research on Parallel Computation, Rice University, January 1993.

[13] Geoffrey Fox, Seema Hiranandani, Ken Kennedy, Charles Koelbel, Uli Kremer, Chau-Wen Tseng, and

Min-You Wu. Fortran D language specification. Technical Report CRPC-TR90079, Center for Research

on Parallel Computation, Rice University, December 1990.

[14] Survey of principal investigators of grand challenge applications: Workshop on grand challenge applica-

tions and software technology, May 1993.

[15] Al Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM 3 user's guide and
reference manual. Technical Report ORNL/TM-12187, Oak Ridge National Laboratory, May 1993.

[16] Michael Gerndt. Updating distributed variables in local computations. Concurrency: Practice and

Experience, 2(3):171-193, September 1990.

[17] S.K.S. Gupta, S.D. Kaushik, S. Mufti, S. Sharma, C.-H. Huang, and P. Sadayappan. On compiling

array expressions for efficient execution on distributed memory machines. In Proceedings of the 1993
International Conference on Parallel Processing, August 1993.

[18] R. v. Hanxleden, K. Kennedy, C. Koelbel, R. Das, and J. Saltz. Compiler analysis for irregular problems

in Fortran D. In Proceedings of the 5th Workshop on Languages and Compilers for Parallel Computing,

New Haven, CT, August 1992.

[19] P. Havlak and K. Kennedy. An implementation of interprocedural bounded regular section analysis. IEEE

Transactions on Parallel and Distributed Systems, 2(3):350-360, July 1991.

[201 S. Hiranandani, K. Kennedy, and C. Tseng. Evaluation of compiler optimizations for Fortran D on MIMD

distributed-memory machines. In Proceedings of the Sixth International Conference on Supercomputing.
ACM Press, July 1992.

[21] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Compiler optimizations for Fortran D on

MIMD distributed-memory machines: In Proceedings Supercomputing '91, pages 86-100. IEEE Computer
Society Press, November 1991.

[22] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Compiling Fortran D for MIMD distributed-

memory machines. Communications of the ACM, 35(8):66-80, August 1992.

[23] J.R.G.Townshend, C.O.Justice, W. Li, C.Gurney, and J.McManus. Global land cover classification by

remote sensing:present capabilities and future possibilities. Remote Sensing of Environment, 35:243-256,

1991.

28

[24] Scott R. Kohn and Scott B. Baden. An implementation of the LPAR parallel programming model for

scientific computations. In Proceedings of the SiztA SIAM Conference on Parallel Processing for Scientific

Computing, pages 759-766. SLAM, March 1993.

[25] George Lake. Personal communication.

[26] Max Lemke and Daniel Quinlan. P++, a C++ virtual shared grids based programming environment

for architecture-independent development of structured grid applications. Technical Report 611, G M D,

February 1992.

[27] J. Li and M. Chen. Compiling communication-efficient programs for massively parallel machines. IEEE

Transactions on Parallel and Distributed Systems, 2(3):361-376, July 1991.

[28] R. Mathur, L.K. Peters, and R.D. Saylor. Sub-grid representation of emission source clusters in regional

air quality modeling. Atmospheric Environment, 26A:3219-3238, 1992.

[29] S. McCormick. Multilevel Adaptive Methods for Partial Diferential Equations. SIAM, 1989.

[30] S. McCormick. Multilevel Projection Methods for Partial Differential Equations. SIAM, 1992.

[31] R. Meakin. Moving body overset grid methods for complete aircraft tiltrotor simulations, AIAA-93-3350.

In Proceedings o/the llth AIAA Computational Fluid Dynamics Conference, July 1993.

[32] Odman M.T. and A.G. Russell. A multiscale finite element pollutant transport scheme for urban and

regional modeling. Atmospheric Environment, 25A:2385-2398, 1991.

[33] Richard Muntz. Personal communication.

[34] Naomi H. Naik and John Van Rosendale. The improved robustness of multigrid elliptic solvers based on

multiple semicoarsened grids. SIAM Journal of Numerical Analysis, 30(1):215-229, February 1993.

[35] Andrea Overman and John Van Rosendale. Mapping robust parallel multigrid algorithms to scalable

memory architectures. To appear in Proceedings of 1993 Copper Mountain Conference on Multigrid

Methods, April 1993.

[36] J.J. Quirk. An Adaptive Grid Algorithm for Computational Shock Hydrodynamics. PhD thesis, Cranfield

Institute of Technology, January 1991.

[37] James M Stichnoth. Efficient compilation of array statements for private memory multicomputers.

Technica! R•?ort CMU-CS-93-109, School of Computer Science, Carnegie Mellon University, February

1993.

[38] J.M. Stone and M.L. Norman. Zeus-2d: A radiation magnetohydrodynamics code for astrophysical

flows in two space dimensions: !. the hydrodynamic algorithms and tests. The Astrophllsicai Journal

Supplements, 80(753), 1992.

[39] Alan Sussman and Joel Saltz. A manual for the multiblock PARTI runtime primitives. Technical Report

CS-TR-3070 and UMIACS-TR-93-36, University of Maryland, Department of Computer Science and

UMIACS, May 1993.

[40] V.N. Vatsa, M.D. Sanetrik, and E.B. Parlette. Development of a flexible and efficient multigrid-based

muitiblock flow solver; AIAA-93-0677. in Proceedings of the 31st Aerospace Sciences Meeting and Ezhibit,

January 1993.

29

[411 H. Zima, P. Brexany, B. Chapman, P. Mehrotra, and A. Schwald. Vienna Fortran - a language spe-cifi-

cation, version 1.1. Interim Report 21, ICASE, NASA Langley Research Center, March 1992.

30

REPORT DOCUMENTATION PAGE FormE oAo•.oe

Public reporting burden fo. this collection of information is estimated to average I hour per response, including the time for reviewing instructions, searching existing data sources.
gathering and maintainin the data needed, and completing and reviewing the collection of information Send comments regarding this burden estimate or any other aspect of this
collection of information, including suUestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports. 121 5 Jefferson
Davis Highway, Suite 1204. Arlington. VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188). Washington. DC 20503

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I October 1993 Contractor Report

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

AN INTEGRATED RUNTIME AND COMPILE-TIME APPROACH
FOR PARALLELIZING STRUCTURED AND BLOCK C NASI-19480
STRUCTURED APPLICATIONS WU 505-90-52-01

6. AUTHOR(S)
Gagan Agrawal

Alan Sussman
Joel Saltz

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) I PERFORMING ORGANIZATION

Institute for Computer Applications in Science REPORT NUMBER

and Engineering 1CASE Report No. 93-77
Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

National Aeronautics and Space Administration AGENCY REPORT NUMBER

Langley Research Center NASA CR-191554

Hampton, VA 23681-0001 ICASE Report No. 93-77

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Michael F. Card
Final Report
Submitted to IEEE Transactions on Parallel and Distributed Systems

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified-Unlimited

Subject Category 61

13. ABSTRACT (Maximum 200 words)
Scientific and engineering applications often involve structured meshes. These meshes may be nested (for multigrid
codes) and/or irregularly coupled (called multiblock or irregularly coupled regular mesh problems). In this paper, we
present a combined runtime and compile-time approach for parallelizing these applications on distributed memory
parallel machines in an efficient and machine-independent fashion. We have designed and implemented a runtime
library which can be used to port these applications on distributed memory machines. The library is currently
implemented on several different systems. To further ease the task of application programmers, we have developed
methods for integrating this runtime library with compilers for HPF-like parallel programming languages. We
discuss how we have integrated this runtime library with the Fortran 90D compiler being developed at Syracuse
University. We present experimental results to demonstrate the efficacy of our approach. We have experimented
with a multiblock Navier-Stokes solver template and a multigrid code. Our experimental results show that our
primitives have low runtime communication overheads. Further, the compiler parallelized codes perform within 20%
of the code parallelized by manually inserting calls to the runtime library.

14. SUBJECT TERMS 15. NUMBER OF PAGES
PARTI; tools; compilers; multiblock; multigrid; computational fluid dynamics 32

16. PRICE CODE
A03

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION
OF REPORT OF THIS PAGE OF ABSTRACT OF ABSTRACT
Unclassified Unclassified
S7540;1-260-550 ýtandard Form 29M(Rev. 2-89)

Prescribed by ANSI Std Z39-IS
2W -102

*uA'u Goveat~mew.Nl PrlUNTNG omct: im . s=46lmu

